Cours 2020-2021

Physique des lasers, optique non-linéaire et quantique [SPHYM109]

  • 6 crédits
  • 45h+15h
  • 1er quadrimestre
Langue d'enseignement: Français

Acquis d'apprentissage

D'une part :

Le premier objectif est d'assurer les connaissances de base en physique des lasers. Les différents éléments qui constituent un laser seront expliqués en détails ainsi que les propriétés du rayonnement laser. Le second objectif est de comprendre le fonctionnement de quelques lasers tels que le laser He-Ne, le laser à CO2, la diode-laser et le laser basé sur des OPO. Pour chacun, les éléments constitutifs et leurs caractéristiques seront détaillés. Les principales applications seront aussi données.

D'autre part :

Maîtriser les concepts physiques essentiels associés à deux aspects fondamentaux de l'optique, désormais incontournables tant sur le plan scientifique que technologique : l'optique non linéaire et l'optique quantique. Connaître les principaux phénomènes optiques non linéaires et leurs applications. Comprendre le rôle de la nature quantique de la lumière en optique contemporaine et approfondir sa compréhension des fondements de la mécanique quantique.

Contenu

D'une part, ce cours est un exposé de la physique des lasers. Les concepts du laser sont d'abord présentés: milieu actif (émission stimulée, équations d'Einstein ...), pompage (électrique, optique ...), cavité résonante (oscillateur laser ...). Au fur et à mesure de l'exposé, les concepts de physique de base sont rappelés (absorption, émission ...) . Ensuite, les propriétés du rayonnement laser sont explicitées. Muni de ces concepts, plusieurs types de laser sont décrits en détails (fonctionnement, propriétés et applications). Au cours théoriques sont associés des travaux dirigés.

D'autre part, le cours aborde deux aspects majeurs de l'optique moderne : l'optique non linéaire (NL) et l'optique quantique. A partir de modèles phénoménologiques, nous décrirons la réponse NL des matériaux à une excitation électromagnétique (e.m.) et adapterons les équations de Maxwell pour en rendre compte. Nous étudierons la propagation des ondes e.m. dans les milieux NL et à leurs surfaces (réflexion, réfraction). Nous analyserons une série de phénomènes NL stationnaires et dynamiques. Nous modéliserons quantiquement la réponse NL des matériaux et verrons l'utilité des spectroscopies optiques NL. Nous quantifierons le champ e.m. et le caractériserons (états de Fock, cohérents, comprimés). Nous décrirons les corrélations de photons et la production de paires de photons par fluorescence paramétrique. Nous étudierons le comportement quantique d'interféromètres (Mach-Zehnder, Franson, Hong-Ou-Mandel). Nous verrons comment des expériences d'optique quantique permettent d'approfondir notre compréhension des fondements de la mécanique quantique (violation des inégalités de Bell, notions de localité, de superposition et d'intrication) et offrent des applications innovantes (téléportation, cryptographie quantique, métrologie).

Table des matières

A) Lasers

 I. Introduction Historique

 II. Principes du laser

       1. Eléments de base d'un laser

       2. Milieu amplificateur (Types d'interactions, coefficients de transition d'Einstein, relations entre les coefficients d'Einstein, inversion de population)

       3. Pompage (Schémas des niveaux, taux de pompage, types de pompage)

       4. Cavité résonante (Amplificateur, oscillateur, familles de cavité, critères de stabilité, caractérisation des modes lasers, oscillateurs lasers)

III. Le rayonnement laser

       1. Propriétés (monochromaticité, cohérence, directivité, luminosité-puissance)

       2. Structure du faisceau

IV. Modes de fonctionnement

       1. Fonctionnement continu

       2. Fonctionnement pulsé (Q-switching mode bloqués)

 V. Exemple de lasers

 VI Sécurité laser

 

B) Optique non linéaire et optique quantique

1. Introduction à l'optique non linéaire
- Nature de la non-linéarité en optique
- Modèles simples de son origine
- Bref aperçu des phénomènes non linéaires
2. Description phénoménologique
- Susceptibilités non linéaires
- Symétries des susceptibilités
- Approximation dipolaire
- Equations de Maxwell non linéaires
3. Génération et propagation des ondes non linéaires
- Cas des solides
- Accord de phase dans les cristaux anisotropes
- Lois de la réflexion et de la réfraction
4. Modèles microscopiques et quantiques des susceptibilités
5. Spectroscopies et microscopies non linéaires
- Caractérisation des surfaces et interfaces des matériaux
- Caractérisation des matériaux en volume
- Aspects dynamiques et transitoires
6. Quantification du champ électromagnétique
- Quantification
- Etats de Fock
- Etats cohérents
- Etats comprimés
- Bruit quantique
- Emission spontanée
7. Interférométrie et corrélations quantiques
- Corrélations du champ électromagnétique
- Lame séparatrice : classique et quantique
- Existence du photon
- Interféromètres de Mach-Zehnder, Franson, Hong-Ou-Mandel
8. Intrication quantique
- Introduction : paradoxe EPR
- Sources de photons intriqués
- Violation des inégalités de Bell
- Cryptographie quantique
- Etats de Bell
- Téléportation

Description des exercices

Les exercices réalisés aux séances de TD sont orientés sur la compréhension et l'application des concepts vus au cours théorique. L'étude de cas relatif à des applications de la vie courante est privilégiée. Citons par exemple, l'étude de la configuration d'un lecteur de cd.

Disciplines

Optique non linéaire
Physique
Lasers
Mécanique quantique classique et relativiste

Méthodes d'enseignement

Les modalités d'enseignement et d'évaluation des unités d'enseignement ont été rédigées en fonction de la situation à la rentrée académique 2020-2021. Cependant, ces modalités pourraient faire l'objet de modifications en fonction de l'évolution de la crise sanitaire liée à la covid-19. Les étudiants seront informés de toute modification de la situation générale (passage à l'enseignement à distance partiel ou complet) par les autorités de l'UNamur tandis que les modifications propres à chaque unité d'enseignement leur seront communiquées par les enseignants, via webcampus

Le cours est donné au tableau et par une présentation Powerpoint.

Mode d'évaluation

Les modalités d'enseignement et d'évaluation des unités d'enseignement ont été rédigées en fonction de la situation à la rentrée académique 2020-2021. Cependant, ces modalités pourraient faire l'objet de modifications en fonction de l'évolution de la crise sanitaire liée à la covid-19. Les étudiants seront informés de toute modification de la situation générale (passage à l'enseignement à distance partiel ou complet) par les autorités de l'UNamur tandis que les modifications propres à chaque unité d'enseignement leur seront communiquées par les enseignants, via webcampus

Examens oraux avec chaque enseignant. Les TD sont évalués lors d’un examen écrit. La note finale est constituée par une moyenne pondérée des trois évaluations. Un échec à l’une des évaluations peut entrainer l’échec de l’ensemble de l’unité d’enseignement, la note finale étant alors la note la plus basse.

Sources, références et supports éventuels

"Lasers et optique non linéaire - Cours, exercices et problèmes corrigés - Niveau M1-M2", Christian Delsart, Ed. Ellipses

Pour la partie "optique non linéaire et optique quantique", le cours ne suit pas la structure d'un ouvrage en particulier mais des informations complémentaires sont disponibles dans les ouvrages suivants :

 - "Nonlinear optics", Robert Boyd, Academic Press (Elsevier)
 - "The Principles of Nonlinear Optics", Yuon-Ren Shen, Wiley
 - "Optique non-linéaire : Cours et problèmes résolus", François Sanchez, Ellipses
 - "Quantum optics", J.C. Garrison and R.Y. Chiao, Oxford University Press
 - "Six quantum pieces: a first course in quantum physics", Valerio Scarani with Chua Lynn and Liu Shi Yang, World Scientific

 

 

Langue d'enseignement

Français

Lieu de l'activité

NAMUR

Faculté organisatrice

Faculté des sciences
Rue de Bruxelles, 61
5000 NAMUR

Cycle

Etudes de 2ème cycle