Cours 2020-2021

Modélisation et analyse de systèmes dynamiques [SMATB210]

  • 5 crédits
  • 30h+22.5h
  • 1er quadrimestre
Langue d'enseignement: Français
Enseignant: MAUROY Alexandre

Acquis d'apprentissage

Caractérisés par un état qui évolue dans le temps, les systèmes dynamiques jouent un rôle essentiel dans de nombreux domaines d'application des mathématiques, comme les sciences exactes (physique, chimie, biologie), l'informatique ou encore l'économie et la gestion.

Au terme du cours, l’étudiant sera capable de modéliser des phénomènes dynamiques simples, de les simuler sur ordinateur (Matlab), et d’étudier sommairement leur comportement à l’aide des principaux outils mathématiques disponibles.

Objectifs

L’objectif de ce cours est d’initier l'étudiant à la démarche de modélisation et d’analyse des systèmes dynamiques.

Contenu

Le cours est fortement pluridisciplinaire et s’adresse à l’étudiant désireux de pouvoir appliquer des outils mathématiques à son domaine de prédilection, ou d’acquérir des connaissances générales en modélisation et théorie des systèmes dynamiques. En outre, les concepts théoriques seront illustrés par de nombreux exemples concrets (mécanismes biologiques, électricité, neurosciences, etc.).

Une partie du cours introduira les différents types de systèmes dynamiques (temps continu/discret, système déterministe/stochastique, etc.) et les notions de base (espace d’état, trajectoire, attracteur). Les techniques de modélisation des systèmes (formalisme de Lagrange, linéarisation) y seront également présentées.

Une seconde partie du cours abordera, et ce de manière introductive, les principales notions mathématiques et méthodes d’analyse des systèmes dynamiques : portrait de phase, diagramme cobweb, calcul de points d'équilibres, étude de stabilité, points périodiques et cycles limites.

Table des matières

  • Les différents types de systèmes ; la notion d'espace d’état ; premier exemple: les automates finis
  • Modélisation d’un système 1D en temps discret ; diagramme « cobweb » ; point fixe stable, instable et orbite périodique
  • Modélisation en temps continu : formalismes Newton – Lagrange ; exemples : systèmes à compartiments, systèmes réactionnels,... ; la technique de linéarisation
  • Systèmes plans : trajectoires et portraits de phase; caractérisation du comportement des systèmes linéaires
  • Systèmes nonlinéaires : existence-unicité des solutions ; stabilité locale du point fixe (théorème de Hartman-Grobman) ; cycle limite; introduction à la théorie des bifurcations
  • Systèmes stochastiques : « master » équation ; processsus stochastique ; équation de Langevin ; équation de Fokker-Planck

Co-requis

Probabilités I [SMATB109] et Equations différentielles [SMATB222]

Méthodes d'enseignement

Les modalités d'enseignement et d'évaluation des unités d'enseignement ont été rédigées en fonction de la situation à la rentrée académique 2020-2021. Cependant, ces modalités pourraient faire l'objet de modifications en fonction de l'évolution de la crise sanitaire liée à la covid-19. Les étudiants seront informés de toute modification de la situation générale (passage à l'enseignement à distance partiel ou complet) par les autorités de l'UNamur tandis que les modifications propres à chaque unité d'enseignement leur seront communiquées par les enseignants, via webcampus

Cours magistral et travaux dirigés (exercices et simulation numérique sur ordinateur (matlab)).

Mode d'évaluation

Les modalités d'enseignement et d'évaluation des unités d'enseignement ont été rédigées en fonction de la situation à la rentrée académique 2020-2021. Cependant, ces modalités pourraient faire l'objet de modifications en fonction de l'évolution de la crise sanitaire liée à la covid-19. Les étudiants seront informés de toute modification de la situation générale (passage à l'enseignement à distance partiel ou complet) par les autorités de l'UNamur tandis que les modifications propres à chaque unité d'enseignement leur seront communiquées par les enseignants, via webcampus

L'évaluation sera organisée sous la forme d'un examen avec l'aide d'un ordinateur. Il comportera deux parties : (1) modélisation de systèmes dynamiques et petites questions d'analyse par écrit; (2) analyse et simulation numérique sur l'ordinateur, présentées oralement.

Si une évaluation n'est pas possible en présentiel, seule la partie (1) sera organisée, lors d'un examen écrit effectué via WebCampus.
 

Sources, références et supports éventuels

  • S. H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering, Westview Press
  • Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields, J. Guckenheimer and P. Holmes, Springer-Verlag, 1983.
  • J.D. Murray, Mathematical Biology, I : An introduction, Springer, 2008.

Langue d'enseignement

Français

Lieu de l'activité

NAMUR

Faculté organisatrice

Faculté des sciences
Rue de Bruxelles, 61
5000 NAMUR

Cycle

Etudes de 1er cycle