Cours 2021-2022

Machine learning : des réseaux de neurones aux big data [ICYBM101]

  • 5 crédits
  • 30h+15h
  • 1er quadrimestre
Langue d'enseignement: Français
Enseignant: Frénay Benoît

Acquis d'apprentissage

A l'issue du cours, l'étudiant devra pouvoir faire preuve d'une compréhension des différents thèmes abordés (cf. contenu), c'est-à-dire être capable d'exprimer avec ses propres mots la théorie et les méthodes vues au cours et expliquer dans quel contexte celles-ci sont utiles. Il doit également être capable de mettre en oeuvre les techniques vues au cours sur des problèmes simples d'analyse de données.

Contenu

Le cours introduit au machine learning et au data mining et permettra à l’étudiant d’attaquer une large palette de problèmes en data science. Quatre sujets sont abordés en machine learning :

  • notion de modèle, modèles simples (Dts, kNN…), overfitting, sélection de modèles

  • apprentissage supervisé (modèles linéaires, ensembles, réseaux de neurones, SVMs...)

  • apprentissage non-supervisé (clustering, visualisation, estimation de densité...)

  • apprentissage probabiliste (inférence probabiliste et modèles probabilistes)


Mode d'évaluation

Le cours est divisé en deux activités d'apprentissage. La première est constituée des cours magistraux et est évaluée par un examen oral portant sur la théorie du cours. La seconde est une évaluation continue de la capacité des étudiants à mettre en oeuvre les techniques vues au cours. Cela consiste en la résolution de des problèmes simples d'analyse de données. L'examen et l'évalution continue comptent respectivement pour 80% et 20% de la note du cours.

Langue d'enseignement

Français

Lieu de l'activité

NAMUR

Faculté organisatrice

Faculté d'informatique
rue Grandgagnage 21
5000 NAMUR
T. 081725252
F. 081724967
secretariat.info@unamur.be

Cycle

Etudes de 2ème cycle